
Journal of Statistical Physics, Vol. 31, No. 3, 1983 

Kinetics of a Finite One-Dimensional Mixture of 
Hard Rods with Different Masses 
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A one-dimensional binary mixture of impenetrable (hard core) particles with 
different mass ratios, m2/m 1 = I, 1.05, 1.2, 2, 3, and 4, was simulated to evolve 
in a computer by the molecular dynamics method. The systems with m 2 > m 1 
and initial velocity distribution _+ v 0 show a clear tendency to the equipartition 
of energy and relaxation toward a Maxwellian velocity distribution unlike the 
nonergodic system with m 2 = m I. Several quantities have been monitored dur- 
ing the evolution to investigate its dependence on the mass ratio m2/m 1 . 
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1, I N T R O D U C T I O N  

One-d imens iona l  systems are  interest ing as ma the ma t i c a l  curiosit ies and,  
very often, because  they p rov ide  phys ica l  insight into more  complex  p rob -  
lems. Moreover ,  those overs impl i f ied  models  of real i ty  present  somet imes  
an  intr insic  interest .  The  k n o w n  exact  solut ions co r respond ing  to one-  
d imens iona l  systems of ha rd  points ,  (1) equal  h a r d  rods,  (2'3) and  ha rd  rods  

with different  lengths, (4) together  with o ther  results on ha rd  spheres systems 
in two and  three dimensions ,  e.g., Ref.  5, have  raised cons iderab le  expecta-  
t ion a b o u t  the kinet ic  and  ergodic  proper t ies  of one-d imens iona l  mixtures  
of par t ic les  with different  masses  whose exact  solut ion is still lacking. 

W e  present  in this pape r  the results of a series of compu te r  s imula t ions  
on the evolut ion  of a f inite system with a " la rge"  n u m b e r  of par t ic les  on  a 
line with different  masses.  The  computa t ions  clear ly show that  the system 
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with a +__ v 0 initial velocity distribution relaxes toward a Maxwellian distri- 
bution and satisfies equipartition of energy. We have also computed the 
evolution of the velocity autocorrelation function and Boltzmann's H 
function, relaxation time, diffusion constant, and their dependence on the 
difference between the masses of the particles. The final equilibrium state is 
shown to be independent of that difference. 

2. DESCRIPTION OF MODEL 

The system consists of N = 1000 impenetrable (hard core) point parti- 
cles, NI = 500 with masses m I and N 2 = 500 with masses m 2, on a line of 
length L r with periodic boundary conditions. The initial location of each 
particle on the line was decided at random in order to simulate spatial 
uniformity in the distributions of the number of particles and mass. Each 
particle was initially assigned at random either a velocity + v 0 or - v  0 
independently of its mass. Note that the sizes of the particles do not 
influence most of the system properties (4) and one may then reinterpret, 
when necessary, our original system of point particles as a system of rods 
with different lengths just by rescaling the length of the line to, say, 
L = L r + N l a  I + N 2 a  2, where a I and a 2 are the respective diameters of the 
two kinds of particles. 

The evolution proceeds according to a scheme, based on the one first 
developed by Adler and Wainwright, (6) which slightly reduces the compu- 
tation time required by the standard algorithm. Let x O. = x i - x j  and 
v 0 = v  i - v j  the relative position and velocity of particles i and j in the 
system. The relative position after a time interval t is given by xb = x,j + 
%.t so that a collision (x~ = 0) occurs at time t/j = - x i J v i j .  Given that the 
hard core potential only allows for collisions between initial neighboring 
particles, we compute the vector t i =- ti, i+ 1 (i = 1,2 . . . . .  N; N + 1 -- 1) of 
v ir tual  col l is ion t imes:  

- ( x , . i+ ,  <. o )  

ti -~ ( - - X i , i +  1 -1- L r ) / � 9  ' (Xi , i+ 1 > O) (1) 

The second value in Eq. (1) is computed when the first one happens to be 
negative (indicating that the particle at one end of the line will collide with 
the one at the other end because of periodic boundary conditions). The 
particles are then moved to the new positions 

x~ = x i + v i t r o ,  t m = min( t  i ; i = 1 , 2 , . . . ,  N ) (2) 

and the velocities of the one (or more) pairs of colliding particles are 
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Table I. Mean Free Time, to, Equilibrium Values for the Standard 
Deviation o and for the Mean Fluctuations A, as Defined in Eq. (6), of 

the Maxwellian Distribution of Velocities, Relaxation Times % and r 2 as 
Measured from the Velocity Autocorrelation Function and Diffusion 

Constants D 1 and D 2 for the Two Species, Corresponding to 
Different Mass Relations. 

equilibrium 
m2/m I Steps t o o 4 •  10 -3  r l / t  o % / t  o D 1 D 2 

1 160,000 2.00 - -  - -  0.25 0.49 
1.05 350,000 1.90 - -  - -  0.30 0.21 0.47 0.50 
1.2 160,000 1.76 1.00 4.45 0.29 0 .26 0.46 0.51 
2 160,000 1.68 1.06 3.55 0.25 0 .33  0.39 0.59 
3 350,000 1.56 1.14 4.61 - -  - -  
4 160,000 1.46 1.21 4.06 0.17 0.51 0.31 0.70 

changed  to 

2(mit) i + mjt)j) 
t); = - -  D i ( 3 )  

mi + mj 

as impl ied  by  m o m e n t u m  and  energy conservat ion.  A new vector  of vi r tual  

coll is ion t imes is c o m p u t e d  by  sub t rac t ing  tm f rom ti; when t~ - t m is zero, 
the new cor respond ing  vir tual  coll is ion t ime is c o m p u t e d  accord ing  to (1). 

The  above  bas ic  step is r epea ted  T times. A t  the end of each run ( T  

steps) we c o m p u t e d  the mean free  t ime t o (the inverse of the col l is ion 
f requency)  which is t aken  as our  uni t  of t ime. 

The  degree of " i r revers ibi l i ty"  i n t roduced  b y  the compu te r  dur ing  the 
evolut ion  of the system because  of round-of f  errors  was mon i to r ed  f rom 
t ime to t ime by  compu t ing  the total  m o m e n t u m  and  energy;  we never  
observed  relat ive differences larger  than  10-13 for the m o m e n t u m  or 10-12 

for the energy. W e  have also checked  by  mak ing  i n d e p e n d e n t  shor t  runs  
(i.e., shor t  runs with the same mass  re la t ion m 2 / m  I but  di f ferent  init ial  
veloci ty  and  spat ia l  d is t r ibut ions)  that  our  system evolut ion  with N = 1000 
is p rac t ica l ly  i n d e p e n d e n t  of the pa r t i cu la r  r a ndomiz a t i on  of the ini t ial  
state. 

Tab le  I gives some detai ls  of the runs r epor ted  in this paper2; they are  

for  m 2 / m  I = 1, 1.05, 1.2, 2, 3, a n d  4. The  choice m 2 = m I was inc luded  for  
compar i son  and  as a previous  test of our  results  which can  then be 
c o m p a r e d  with the k n o w n  ana ly t ica l  results by  Lebowi tz  e t a / .  (2-4) The  

2 We have just learned about a computation by M. K. Phani and R. Bhargava on a system 
with m 2 / m  I = 10 which partially reproduces some of the results reported in this paper. 
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choice m 2 = 3m 1 satisfies (when 0 = 2~r/3) the condition 

cos0 = (rn 1 - m z ) / ( r n  1 + m2) 
(4) 

0 = rational multiple of rr 

which was shown (v) to bring periodic behavior (thus avoiding ergodicity) 
into a system with two particles of masses m I and m 2. 

3. D ISCUSSION OF RESULTS 

The velocity distribution and the ratio e = (E  2 - E ~ ) / ( E  l + E2) , where 
E~ represents the (kinetic) energy of species a, are two important quantities 
to conclude about the kinetic and ergodic properties of the system. We 
observe that e ~-- (m 2 - r n l ) / ( m  2 + m l )  in the initial state (as implied by the 
initial random distribution of velocities +_ %, % -- 1) while e ~ 0 when time 
increases revealing that there is a clear tendency to the equipartition of 
energy in the system with rn 1 =/= m 2. Fluctuations prevent very definite 
conclusions but one observes that the time at which e starts to fluctuate 
around zero roughly increases with decreasing m z / m  1 . A better indication 
of the system relaxation toward equilibrium is given by the time evolution 
of the velocity distribution. 

When m 2 = m 1 the initial distribution + v 0 is conserved during the 
evolution. When m 2 > m 1 , however, we observe that the initial distribution 
degenerates into two Gaussians centered, respectively, at + %; these finally 
evolve into a unique Gaussian centered around ~ -- 0: 

1 exp[(v  _ ~)2/2a21 (5) 
f ( v ) -  o(2vr)l/2 

This behavior is illustrated in Fig. lb, corresponding to m z / m  1 = 1.2, where 
the Maxwellian distribution (5) is clearly present in the system before 
150,000 steps. Fig. la  corresponds to m 2 / m  I = 4 where the distribution is 
already Maxwellian before 10,000 steps.  The case m z / m  1 = 1.05 never 
reached a Maxwellian distribution before 350,000 steps but one guesses 
from Fig. lc a behavior similar to the one in Fig. lb although with a much 
larger relaxation time (which will then diverge when m 2 / m  I --> 1). 

The cases m J m  I = 2, 3, and 4 are very similar to each other. The only 
differences present are a clear tendency of the velocity dispersion to 
increase with m z / m  l . The fluctuations, on the other hand, seem to be larger 
for the case m 2 = 3ml;  if real, this would be the only distinctive characteris- 
tic of the system satisfying the condition (4). In order to be more definite 
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about  this effect we have looked at 

A = _1 [fma• ) _ fexp(i)i) 2 
tn i=1 

(6) 

where fexp is the actual distribution measured during the experiment and 
fm~x is the function given by Eq. (5) with the standard deviation r and mean 

corresponding to fexp. Computing A from vl = - 3.90 to v m = 3.80 with 
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Fig. la. Evolution with time (at indicated number of steps) of the velocity distribution in a 
binary mixture of 1000 hard particles when one starts with velocities _+ 1 randomly distributed 
among the particles. The relation between the masses of the species is m 2 / m  I = 4. The solid 
curves are Gaussian distributions (5) with the mean and standard deviation equal to the ones 
measured in the system at that time. 
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velocity increments  of 0.1 (i.e., m = 78) we obtain  for A (and ~-) the values 
shown in Table  I as an average over the s ta t ionary par t  of the evolution. 

We  have  also looked at the velocity autocorrelat ion funct ion +( t )  
= constant(v(O)v(t)), which is defined here as 

N, N, 
+~(t) = ~ v,(O)vi(t)/ ~ v,(O) 2, a = 1,2 (7) 

i = 1  i = 1  

where ~,  corresponds to particles with a mass  m~. 
In  the case m 2 = m t we find that  +( t )  is practical ly indist inguishable 

f rom the exact  solution, (3) 

+ ( t )  = vZexp( - 2nvot ) (8) 
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Fig .  lb .  S a m e  as  Fig.  l a  fo r  m2/m 1 = 1.2. 

V 
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where v o = 1, n = 1 in our system, except for the fact that the experimental 
values present slight fluctuations around Eq. (8). Figure 2 shows the 
experimental ~,(t)  when m 2 / m  1 = 2 (dots) compared with the function (8) 
for equal masses; the other cases are qualitatively similar. We observe in 
general that +~(t) (smaller mass) presents more important fluctuations than 
+2(t). We also observe that +l(t) relaxes faster than ~(t) (equal masses), 
while ~p2(t) relaxes slower than q~(t). In order to be more precise about this 
fact, we have assumed 

t )~ ( t )~e  -t/*~ a = 1,2 (9) 

which happens to represent fairly well the data (the coefficient of linear 
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Fig. lc. Same as Fig. la for m2/m 1 = 1.05. 
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Fig. 2. Velocity autocorrelation functions +l(t) and +2(t) for the two species, computed 
according to Eq. (7), in the case m2/ml = 2, as a function of the time. The solid curve 
represents the corresponding exact function computed by Lebowitz, Percus, and Sykes when 
rn 2 = ml .(3) 

regression for in q~, versus t is always larger than 0.996), and computed the 
"relaxation time" ~-, for each species and mass relation. The result is shown 
in Table I: ,rz/t  o increases with m z / m l ;  while ,cl/ t  o decreases with m z / m  l 
(and m 2 = m 1 is also singular from this point of view). (See Fig. 3.) 

Another quantity of interest is the diffusion constant defined here as 

~ol-5to D,  = ~ ( t ) d t ,  a = 1,2 (10) 

given that ~ ( t ) ~  0 for t ~> 1.5t 0. This gives the values reported in Table I; 
that is, like %, D 1 decreases, while D 2 increases with m 2 / m  I . The computed 
value when m 2 = m 1 (0.49) is comfortably close to the exact value 0.5, 
which follows from Eq. (8). Interesting enough the data fit very well (with 
coefficients of regression larger than 0.999) linear relations: 

D 1 = -0.58/~ + 0.77, D 2 = 0.69t~ + 0.14 

with/~ = m l m 2 / ( m  I + m2) the reduced mass, which intersects at/~ = 0.496 
1/2  (m I = m2) with D 1 = D 2 =  0 .482~0.49  as one should expect for 

consistency. 
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The evolution of the system has also been monitored by computing the 
Boltzmann H function: 

= fdv f(v, t)ln f(v, t) (11) H(t) 

This function is observed to decrease monotonically with time as shown by 
Table II, which collects some representative values of - H(t) as a function 
of t i t  o and m2/m I. Every run (with the exception of m2/m 1 = 1.05) 
reached a stationary regime, dH/dt = 0. The time at which the system 
reaches this regime (with a common value Hen ~ -0 .37)  is approximately 
t / to~3.5 at m2/ml=2, 3, and 4, t / to~50  at m2/ml = 1.2, and the 
extrapolation of the values at mz/m 1 = 1.05 gives t / to~450 in order to 
have H ~ - 0.37. 

We have finally computed the equilibrium radial distribution function 
g(r) corresponding to different systems. This should be independent of the 
mass relation rnz/ml, thus allowing us to check that our systems relaxed to 
the true, common equilibrium state. 

In this case we have also allowed for different lengths, a 2 and a 1 , for 
the two kinds of particles. The function g(r) was then computed as 

1 • [Ani(+r) + Ani(--r)] (12) 
g(r)-- 2oNAr i=1 

where p = N I L  and Ar is the r increment which was taken, Ar ---- 0.05 a 1 
with a 1 < a 2. The quantity Ani(r ) represents the portion (note 2xr < a~ 
< a2) of a particle lying inside Ar a distance r apart  from particle i. 

Table II. Values for the Negative of the Boltzmann H Function (9) 
at Different Values of t i t  o and m2/m I Showing That #H( t ) /d t  < 0 and 

a Common Equilibrium Value, Heq = -0.37, 

1.05 1.2 2 3 4 

1 - -  0.21 0.25 0.23 0.22 

2 - -  0.23 0.33 0.32 0.31 

3 - -  0.25 0,35 0.35 0.35 

5 0.27 0.37 0.37 0.37 
10 0.15 0.29 0.37 0.37 0.37 

20 0.16 0.33 0.37 0.37 0.38 
50 0.20 0.36 0.37 0.37 0.37 

70 0.22 0.37 0.37 0.37 0.37 
100 0.24 0.36 0.37 0.37 0.37 

150 0.28 0.37 0.37 0.37 0.37 

300 0.33 . . . .  
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Fig. 3. Linear fits to the data Iln@= I versus t / t  o in the cases: (a) a = 1, m 2 / m  I = 1.2; (b) 
c~ = 1, m 2 / m  , = 2; (c) ct = 1, m 2 / m  , = 4; (d) a = 2, m 2 / m  , = 2; and (e) e~ = 2, m 2 / m  I = 4. 
The experimental points are shown for (c) and (e). 

g(r) 

1"11 J~ 

"~ 
. . . .  ~ o - -  f~'~-'~ �9 �9 ~X~'~XX 

Fig. 4. 

! I 

1 5 r/a 
The equilibrium radial distribution function g(r) ,  as defined in Eq. (10), versus r / a  1 

in the cases m 2 / m  1 = 1.2 (empty circles), 2 (full circles) and 4 (crosses). 
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The quanti ty (10) was also averaged over time during the stat ionary 
part  of the evolution in order to reduce fluctuations. We find that indeed 
g(r)  at equilibrium is independent  of m 2 / m l ;  in fact, assuming a 2 = a I for 
m 2 =  m 1 and  a 2 = 2 a  1 for m 2 > m l, g(r) presents always two distinct 
maxima which for a 2 = 2a I have very approximately  the same high and  
location, being 1.5 a I the location of the first max imum and 4.2 a 1 the 
location of the second one, as shown by  Fig. 4. 
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