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Kinetics of a Finite One-Dimensional Mixture of
Hard Rods with Different Masses
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A one-dimensional binary mixture of impenetrable (hard core) particles with
different mass ratios, m,/m; = 1, 1.05, 1.2, 2, 3, and 4, was simulated to evolve
in a computer by the molecular dynamics method. The systems with m, > m,
and initial velocity distribution = v, show a clear tendency to the equipartition
of energy and relaxation toward a Maxwellian velocity distribution unlike the
nonergodic system with m, = m,. Several quantities have been monitored dur-
ing the evolution to investigate its dependence on the mass ratio m,/m,.
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theory, kinetic theory.

1. INTRODUCTION

One-dimensional systems are interesting as mathematical curiosities and,
very often, because they provide physical insight into more complex prob-
lems. Moreover, those oversimplified models of reality present sometimes
an intrinsic interest. The known exact solutions corresponding to one-
dimensional systems of hard points,? equal hard rods,>® and hard rods
with different lengths,(® together with other results on hard spheres systems
in two and three dimensions, e.g., Ref. 5, have raised considerable expecta-
tion about the kinetic and ergodic properties of one-dimensional mixtures
of particles with different masses whose exact solution is still lacking.

We present in this paper the results of a series of computer simulations
on the evolution of a finite system with a “large” number of particles on a
line with different masses. The computations clearly show that the system
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with a =+ v, initial velocity distribution relaxes toward a Maxwellian distri-
bution and satisfies equipartition of energy. We have also computed the
evolution of the velocity autocorrelation function and Boltzmann’s H
function, relaxation time, diffusion constant, and their dependence on the
difference between the masses of the particles. The final equilibrium state is
shown to be independent of that difference.

2. DESCRIPTION OF MODEL

The system consists of N = 1000 impenetrable (hard core) point parti-
cles, Ny =500 with masses m, and N, = 500 with masses m,, on a line of
length L, with periodic boundary conditions. The initial location of each
particle on the line was decided at random in order to simulate spatial
uniformity in the distributions of the number of particles and mass. Each
particle was initially assigned at random either a velocity +1v, or — o,
independently of its mass. Note that the sizes of the particles do not
influence most of the system properties” and one may then reinterpret,
when necessary, our original system of point particles as a system of rods
with different lengths just by rescaling the length of the line to, say,
L=1L + Nya, + N,a,, where a, and g, are the respective diameters of the
two kinds of particles.

The evolution proceeds according to a scheme, based on the one first
developed by Adler and Wainwright,® which slightly reduces the compu-
tation time required by the standard algorithm. Let x; = x; — x; and
v; = v, — v; the relative position and velocity of particles / and j in the
system. The relative position after a time interval 7 is given by x; = x; +
v,? so that a collision (x; = 0) occurs at time £, = —x; /0. Given that the
hard core potential only allows for collisions between initial neighboring
particles, we compute the vector ;=1 (i=12,...,N; N+1=1) of
virtual collision times:

£ = "xi,i+1/vi,i+1 (%141 <0)
I (= X1+ L)/ 01 (Xii+1>0)
The second value in Eq. (1) is computed when the first one happens to be
negative (indicating that the particle at one end of the line will collide with

the one at the other end because of periodic boundary conditions). The
particles are then moved to the new positions

(1)

x; = x; + vt,,, tp=min{t;i=12,...,N} (2)

and the velocities of the one (or more) pairs of colliding particles are
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Table . Mean Free Time, 7,, Equilibrium Values for the Standard
Deviation o and for the Mean Fiuctuations A, as Defined in Eq. (6), of
the Maxwellian Distribution of Velocities, Relaxation Times 7, and 7, as
Measured from the Velocity Autocorrelation Function and Diffusion
Constants D, and D, for the Two Species, Corresponding to
Different Mass Relations.

equilibrium

my/m, Steps Iy o AX107% 7/ty m/ty Dy D,
1 160,000 2.00 — — 0.25 0.49
1.05 350,000 1.90 — — 030 021 047 050
1.2 160,000 1.76 1.00 4.45 029 026 046 0.51
2 160,000 1.68 1.06 3.55 025 033 039 059
3 350,000 1.56 1.14 4.61 — —_— — =
4 160,000 1.46 1.21 4.06 0.17 051 031 0.70

changed to

,_ 2(myo; + myvy) B

Y;

Y; 3)
as implied by momentum and energy conservation. A new vector of virtual
collision times is computed by subtracting z,, from ¢;; when ¢, — ¢,, is zero,
the new corresponding virtual collision time is computed according to (1).

The above basic step is repeated T times. At the end of each run (T
steps) we computed the mean free time t, (the inverse of the collision
frequency) which is taken as our unit of time.

The degree of “irreversibility” introduced by the computer during the
evolution of the system because of round-off errors was monitored from
time to time by computing the total momentum and energy; we never
observed relative differences larger than 10~'? for the momentum or 10~ 12
for the energy. We have also checked by making independent short runs
(i.e., short runs with the same mass relation m,/m, but different initial
velocity and spatial distributions) that our system evolution with N = 1000
is practically independent of the particular randomization of the initial
state.

Table I gives some details of the runs reported in this paper?; they are
for my/m, =1, 1.05, 1.2, 2, 3, and 4. The choice m, = m, was included for
comparison and as a previous test of our results which can then be
compared with the known analytical results by Lebowitz e al*™® The

m; + my

2 'We have just learned about a computation by M. K. Phani and R. Bhargava on a system
with m,/m; = 10 which partially reproduces some of the results reported in this paper.
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choice m, = 3m, satisfies (when 8 = 2 /3) the condition

cosf = (m, — my)/(m; + m,)

4

# = rational multiple of #

which was shown'” to bring periodic behavior (thus avoiding ergodicity)
into a system with two particles of masses m, and m,.

3. DISCUSSION OF RESULTS

The velocity distribution and the ratio e = (E, — E|)/(E, + E,), where
E, represents the (kinetic) energy of species a, are two important quantities
to conclude about the kinetic and ergodic properties of the system. We
observe that e =~ (m, — m,}/(m, + m,) in the initial state (as implied by the
initial random distribution of velocities = vy, v, = 1) while e >0 when time
increases revealing that there is a clear tendency to the equipartition of
energy in the system with m; # m,. Fluctuations prevent very definite
conclusions but one observes that the time at which e starts to fluctuate
around zero roughly increases with decreasing m,/m,. A better indication
of the system relaxation toward equilibrium is given by the time evolution
of the velocity distribution.

When m, = m, the initial distribution =* v, is conserved during the
evolution. When m, > m,, however, we observe that the initial distribution
degenerates into two Gaussians centered, respectively, at = v,; these finally
evolve into a unique Gaussian centered around ¢ = 0:

1 =2 74 2
f(v)= ) exp| (v — 8)°/20?] %)

This behavior is illustrated in Fig. 1b, corresponding to m,/m; = 1.2, where
the Maxwellian distribution (5) is clearly present in the system before
150,000 steps. Fig. la corresponds to m,/m, = 4 where the distribution is
already Maxwellian before 10,000 steps. The case m,/m, = 1.05 never
reached a Maxwellian distribution before 350,000 steps but one guesses
from Fig. ic a behavior similar to the one in Fig. 1b although with a much
larger relaxation time (which will then diverge when m, /m, > 1).

The cases m,/m, = 2, 3, and 4 are very similar to each other. The only
differences present are a clear tendency of the velocity dispersion to
increase with m,/m,. The fluctuations, on the other hand, seem to be larger
for the case m, = 3m,; if real, this would be the only distinctive characteris-
tic of the system satisfying the condition (4). In order to be more definite
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about this effect we have looked at

1 m 5 1/2
A= { 2 [ fan(®) = forg(01)] } ()

where f,, is the actual distribution measured during the experiment and
finax 18 the function given by Eq. (5) with the standard deviation 7 and mean
 corresponding to f,,,. Computing A from v; = —3.90 to v,, = 3.80 with

no. particles

i
100)
3000 steps
min .mllll Il[“l“l”mm ,ululmgul. o
-1 +1 v
' 10000st.
50
-1 +1 A%
150,000 s t.

Fig. 1a. Evolution with time (at indicated number of steps) of the velocity distribution in a
binary mixture of 1000 hard particles when one starts with velocities + I randomly distributed
among the particles. The relation between the masses of the species is #,/m,; = 4. The solid
curves are Gaussian distributions (5) with the mean and standard deviation equal to the ones
measured in the system at that time.
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velocity increments of 0.1 (i.e., m = 78) we obtain for A (and 7) the values
shown in Table I as an average over the stationary part of the evolution.

We have also looked at the velocity autocorrelation function (7)
= constant{v(0)v(¢)>, which is defined here as

N, N,
Y, (1) = igl v,-(O)v,-(t)/ i§1 v,-(O)z, a=1,2 N

where v, corresponds to particles with a mass m,.
In the case m, = m; we find that ¢ () is practically indistinguishable
from the exact solution,®

(1) = vgexp(—2nvgt) (8)
no.particles
A
1004 10,000 Steps
| “ ,ll”" l’hll.
-1 +1 v
20,000 st,
50 ll l
,.,.IHH ,“\lll..l.,.,:ll||l ’ |I|.;.. |
-1 +1 v
50 150000 st.
e
-1 +1 v
(b

Fig. 1b. Same as Fig. 1a for m,/m; = L.2.
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where v, = 1, n = 1 in our system, except for the fact that the experimental
values present slight fluctuations around Eq. (8). Figure 2 shows the
experimental ¢, (¢) when m,/m, = 2 (dots) compared with the function (8)
for equal masses; the other cases are qualitatively similar. We observe in
general that ,(¢) (smaller mass) presents more important fluctuations than
Y,(£). We also observe that ¢,(¢) relaxes faster than /(7) (equal masses),
while y,(¢) relaxes slower than (7). In order to be more precise about this
fact, we have assumed

ba()~e™% a=1,2 ©)

which happens to represent fairly well the data (the coefficient of linear

no.particles
A
1501
4 100,000steps
1
Mk, .l' " .y
-1 +1
100
200000 st.
Ill” 1., ,Lll[”“ |h.. v
-1 +1
300000 st.
) H '
.IIN’ l'll'll‘lr Illlll |l|||| MY
-1 +1
(c)

Fig. Ic. Same as Fig. 1a for m,/m; = 1.05.
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0 *t/t,

Fig. 2. Velocity autocorrelation functions ¢,(r) and y¢,(r) for the two species, computed

according to Eq. (7), in the case m,/m; =2, as a function of the time. The solid curve

represents the corresponding exact function computed by Lebowitz, Percus, and Sykes when
= 3

m, = my.

regression for Iny, versus ¢ is always larger than 0.996), and computed the
“relaxation time” 7, for each species and mass relation. The result is shown
in Table 1: 7,/ ¢, increases with m,/m,; while r,/¢, decreases with m,/m,
(and m, = my is also singular from this point of view). (See Fig. 3.)
Another quantity of interest is the diffusion constant defined here as

1.5
Da=J; o (fdl,  a=12 (10)

given that ¢, (f) =0 for 1 = 1.5¢,. This gives the values reported in Table I;
that is, like 7, D, decreases, while D, increases with m,/m,. The computed
value when m, = m; (0.49) is comfortably close to the exact value 0.5,
which follows from Eq. (8). Interesting enough the data fit very well (with
coefficients of regression larger than 0.999) linear relations:

D, = —058u+077, D,=0.69u+0.14

with p = mm,/(m,; + m,) the reduced mass, which intersects at p = 0.496
~1/2 (m; = m,) with D, = D, =0.482~0.49 as one should expect for
consistency.
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The evolution of the system has also been monitored by computing the
Boltzmann H function:

H(t) = f do f(v,)ln f(v,7) (11

This function is observed to decrease monotonically with time as shown by
Table II, which collects some representative values of — H(#) as a function
of t/t, and m,/m;. Every run (with the exception of m,/m = 1.05)
reached a stationary regime, dH /dr = 0. The time at which the system
reaches this regime (with a common value H, =~ —0.37) is approximately
t/ty~=3.5 at my/m; =2, 3, and 4, ¢/t,~50 at m,/m, =12, and the
extrapolation of the values at m,/m; = 1.05 gives ¢/1,~450 in order to
have H ~ —0.37.

We have finally computed the equilibrium radial distribution function
g(r) corresponding to different systems. This should be independent of the
mass relation m,/m;, thus allowing us to check that our systems relaxed to
the true, common equilibrium state.

In this case we have also allowed for different lengths, a, and g,, for
the two kinds of particles. The function g(r) was then computed as

N
_ 1
g(’)—m[El[Ani(““’)*'A"i(-r)}} (12)
where p= N /L and Ar is the r increment which was taken, Ar = 0.05 q,
with a, < a,. The quantity An,(r) represents the portion (note Ar < a,
< a,) of a particle lying inside Ar a distance r apart from particle i.

Table 1l. Values for the Negative of the Boltzmann H Function (9)
at Different Values of /1, and m,/m, Showing That JH(¢)/dt < 0 and
a Common Equilibrium Value, H, = -0.37.

my/m,
t/ty 1.05 1.2 2 3 4

1 — 0.21 0.25 0.23 0.22

2 — 0.23 0.33 0.32 0.31

3 — 0.25 0.35 0.35 0.35

5 — 0.27 0.37 0.37 0.37
10 0.15 0.29 0.37 0.37 0.37
20 0.16 0.33 0.37 0.37 0.38
50 0.20 0.36 0.37 0.37 0.37
70 0.22 0.37 0.37 0.37 0.37
100 0.24 0.36 0.37 0.37 0.37
150 0.28 0.37 0.37 0.37 0.37

300 0.33 — — — —
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T

0.5 1.0 t/tg

Fig. 3. Linear fits to the data |Iny,| versus 7/1y in the cases: (a) a =1, my/m; = 1.2; (b)
a=1Lm/m=2;()a=1,m/m=4 (d)a=2, m/m =2; and (e) a =2, my/m, =4.
The experimental points are shown for (c) and (e).

a(r)

1.0 —g——-— — C%___ %

1 5 r/a-

Fig. 4. The equilibrium radial distribution function g(r), as defined in Eq. (10), versus r/a,
in the cases m,/m; = 1.2 (empty circles), 2 (full circles) and 4 (crosses).
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The quantity (10) was also averaged over time during the stationary
part of the evolution in order to reduce fluctuations. We find that indeed
g(r) at equilibrium is independent of m,/m,; in fact, assuming a, = a, for
m,=m, and a,=2a, for m, > m,, g(r) presents always two distinct
maxima which for a, = 2a, have very approximately the same high and
location, being 1.5 a4, the location of the first maximum and 4.2 a; the
location of the second one, as shown by Fig. 4.
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